Contents

Getting Started with STM32F103C8T6

Overview

In addition to familiar Arduino boards, there are other options for use in electronic projects. One of these options is STM microcontroller. STM microcontrollers are based on ARM structure, and they are available at affordable prices. In this tutorial, you’ll learn how to use the STM32F103C8T6 board. 

What You Will Learn

Introduction to ARM and STM Microcontrollers

You may have heard about ARM or Advanced RISC Machine. ARM is an architecture (not a microcontroller) to build 32bits and 64bits processors. Because of its affordable price, high speed, and low power consumption, the ARM architecture is widely used in embedded system processors such as mobile phones, Raspberry Pi, microcontrollers and etc.  Microcontrollers built with the ARM architecture are commonly called Cortex- (A, R, M) X. A for the practical systems such as mobile phones, tablets, embedded systems, …, R for the real-time systems, and M for systems with low power consumption. The number after these letters shows the processor performance lines.  ST company is one of the companies which use ARM architecture for their processors. The microcontrollers made by this company, called STM, have become popular due to their high diversity and providing functional programming libraries.  STM microcontroller families named as the following rule:  STM32xxaayznn  ST: name of the company  M32: 32bits microcontroller  XX: family and the working class: 
Code Core Max Freq(MHz) Max Flash(KB) Max SRAM(KB) Target
L0 CortexM0+ 32 192 20 Ultra Low Power
F0 CortexM0 48 256 32 Mainstream
F3 CortexM4 72 512 80 Mainstream
L1 CortexM3 32 512 80 Ultra Low Power
F1 CortexM3 72 1024 96 Mainstream
F2 CortexM3 120 1024 128 High Performance
L4 CortexM4 80 1024 320 Ultra Low Power
F7 CortexM7 216 2048 512 High Performance
H7 CortexM7 400 2048 1048 High Performance
aa: depends on microcontrollers function. (not following any specific algorithm)  Y: number of pins: 
Z: memory:
nn: packaging. You can see the most important packages in the following table: 

Required Materials

Hardware Components

STM32F103C8T6 ARM Minimum System Development Board × 1
ST Link v2 × 1
CP2102 USB to TTL/Serial Module × 1

Software Apps

Keil MDK-ARM uVision5
STM32 CubeMx
STM23 Flash Loader Demostrator

STM32F103C8T6 Features STM32F103C8T6 is a good choice to start working with STM microcontrollers due to its low price and availability. The general specifications of this microcontroller are as follows: 

  • 32bits CortexM3
  • microcontroller
  • 64 KB flash memory
  • 20 KB SRAM memory
  • The maximum
  • processing speed of 72 MHz
  • 37 GPIO pins
  • 12 PWM channels
  • Having 10 12–bits ADC channels
  • Supporting 2 units of
  • I2C, 2 units of SPI and 3 units of UART
  • Having 3 16–bits timer
  • Supporting CAN 2.0 protocol 

This microcontroller is available in modular and ready-to-use form

Getting Started with STM32F103C8T6

One of the best tools for programming STM microcontrollers is the MDK-ARM uVision 5 compiler, a powerful application including an integrated programming environment, C and C ++ compiler, debugger, micro–programming ability, and all the required elements for programming.
The STM32 CubeMX is another useful tool to work with STM microcontrollers.   Changing the registers, assigning the clock and configuring STM microcontrollers with codes may be difficult, but using the STM32 CubeMX, you can easily make adjustments to your STM microcontroller in a graphical and user-friendly environment and generate the prepared project for the Keil software.
After creating the project and writing your program, it’s time to upload the code on the microcontroller. there are two common ways to do this:

Programming STM Microcontrollers Using ST-Link

In this method, the ST–Link V2.0 tool for STM microcontrollers is used. Before programming, you need to download and install the drivers required by ST-Link from here

Now just do the following steps in STM32 CubeMX and Keil. 

Programming STM Microcontrollers Using USB to TTL Module

STM microcontrollers can be programmed through the Rx and Tx pins. In this method, a programmer tool is not required, and the only tool you need is a USB-TTL converter. To use this method, the STM32 Flash Loader Demonstrator software is also required. 
Note
To program the microcontroller using USB, you should connect BOOT0 pin to 3.3V and BOOT1 pin to GND. (just displace the BOOT0 jumper in the modular boards) 
Now follow these steps: 
Note
If the Target is protected is enabled for your board, and the red light is displayed, first, click the Remove protection and then click Next. 

Make a Blinker using STM32F103C8T6

In this project, we use the LED on the board, this LED is connected to the PC13 pin. 

Now follow the steps below in STM32 CubeMX: 

First Step. Selecting the Microcontroller:

After starting a new project, the list of microcontrollers will appear. Find STM32F103C8T6 and select it

Third Step. Clock Configurations 

Fourth Step. Seeing the Result

Select the Open project option and your project will open in Keil. 

Now you are ready to start programming.

Code

For many of the STM microcontrollers applications, the HAL library is a good option; this library is enabled by default on your software. 
Note
It is recommended to write your codes between USER CODE BEGIN and USER CODE END parts. If you change some things in CubeMX and re-export, the codes that are written out of the specified parts will be deleted. 
/**
  ******************************************************************************
  * LED Test
  * Description        : Saeed Hosseini @ Electropeak
Home
****************************************************************************** * * COPYRIGHT(c) 2019 STMicroelectronics * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f1xx_hal.h" /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* Private variables ---------------------------------------------------------*/ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void Error_Handler(void); static void MX_GPIO_Init(void); /* USER CODE BEGIN PFP */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE END PFP */ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration----------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* Configure the system clock */ SystemClock_Config(); /* Initialize all configured peripherals */ MX_GPIO_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ HAL_GPIO_TogglePin(LED_GPIO_Port,LED_Pin); HAL_Delay(50); /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** System Clock Configuration */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; /**Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /**Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } /**Configure the Systick interrupt time */ HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); /**Configure the Systick */ HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); /* SysTick_IRQn interrupt configuration */ HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } /** Configure pins as * Analog * Input * Output * EVENT_OUT * EXTI */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LED_Pin */ GPIO_InitStruct.Pin = LED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler */ /* User can add his own implementation to report the HAL error return state */ while(1) { } /* USER CODE END Error_Handler */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Most parts of this code are generated by STM32 CubeMX. The HAL_GPIO_TogglePin (LED_GPIO_Port, LED_Pin) function changes the pin status by specifying the desired port and pin. You can see that the desired port and pin are specified with the selected label in the STM32 CubeMX. HAL_Delay function (50); function causes a delay of 50 ms. To learn more about the full functions available in the HAL library, you can read here.

What’s Next?

  • Try turning the LED on and off using a key by inserting another GPIO pin as input and connecting a key.
Liked What You See?​
Get Updates And Learn From The Best​

Leave a Reply

Your email address will not be published. Required fields are marked *